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What are images?
(Bredies et al. 2018) 



What are images; images can be produced in 
many different ways

• Photography: Photography produces two dimensional images by

projecting a scene of the real world through some optics onto a two-

dimensional image plane. The optics are focused onto some plane,

called the focal plane, and objects appear more blurred the farther

they are from the focal plane. Hence, photos usually have both sharp

and blurred regions.



Photography



Scans

To digitize photos one may use a scanner. The scanner illuminates the

photo row by row and measures the brightness or color along the lines.

Usually this does not result in some additional blur. However, a scanner

operates at some resolution, which results in a reduction of information.

Moreover, the scanning process may result in some additional artifacts. Older

scans are often pale and may contain some contamination. The correction of

such errors is an important problem in image processing.



Scans: An example



Mathematical definition of an image

Ω: Image domain, 𝐹: Color space;

𝑢: Ω → 𝐹 Image .

Discrete and Continuous Images:

Discrete d-dimensional image:

Ω = 1,⋯ ,𝑁1 ×⋯× 1,⋯ ,𝑁𝑑 .

Continuous d-dimensional image:

Ω ⊂ ℜ𝑑 or specifically

Ω = 0, 𝑎1 ×⋯× 0, 𝑎𝑑 .



Different kinds of color spaces

Black-and-white (binary) images: 𝐹 = 0,1 .

Grayscale images with discrete color space with k-bit depth:

𝐹 = 0,⋯ , 2𝑘 − 1 .

Color images with k-bit depth for each of 3 color channels:

𝐹 = 0,⋯ , 2𝑘 − 1 3.

Images with continuous gray values: 𝐹 = 0,1 or 𝐹 = ℜ.

Images with continuous colors: 𝐹 = 0,1 3 or 𝐹 = ℜ3.



A discrete image 



Encoding colors in different color channels

• How to measure distances in the color space?

• The perception of color is very complex and also subjective.

• Color Channels:

RGB space: 𝑅, 𝐺, 𝐵 ∈ 0,1 3

HSV space: 𝐻, 𝑆, 𝑉 ∈ 0,360 × 0,100 × 0,100 .





HSV space, visualized as a cylinder



Compressed sensing MRI
(Lustig et al. 2008)



MRI as a compressed sensing system.



Spatial encoding



Direct problem

• 𝑥 ∈ 𝑅𝑛: The clean image in the spatial domain;

• Ϝ ∈ 𝐶𝑛×𝑛: Fourier Transform;

• 𝑀 ∈ 𝑑𝑖𝑎𝑔 𝑛, 𝑛 ,𝑀 𝑖, 𝑖 = 0 𝑜𝑟 1, 𝑖 = 1,⋯ , 𝑛: Sampling Mask;

• 𝑀𝐹𝑥: Sampled Fourier transform of the clean image; 

• Direct process: 𝑦 = 𝑀𝐹𝑥 + 𝜈, 𝜈 ∈ 𝑅𝑛×𝑛 (noise), 𝑦 ∈ 𝑅𝑛×𝑛(observed 
data).



Inverse problem

• Problem: How to restore 𝑥?

Consider the following linear system

y = 𝑀𝐹𝑥 (y, K and F are given).

This system may have infinitely many solutions. Which solution should 
be chosen?

This system may be unsolvable. 

How to insert the unknown noise to the problem?



Zero filled solution

𝑦 = 𝑀Ϝ𝑥 + 𝜈, 𝑏 = 𝑦 − 𝑣 → 𝑏 = 𝑀Ϝ𝑥 →

𝑥 = Ϝ−1𝑏 is a solution.

Definition (zero filled solution):  𝑍𝐹 = Ϝ−1𝑦.



Sampling pattern (a), zero filled solution (b) 



Compressed MRI

min Ψ𝑥
1

𝑠. 𝑡. 𝑦 − 𝑀Ϝ𝑥
2

2
≤ 𝜖

Ψ is a linear operator such that Ψ𝑥 is a sparse representation of the 
vector x.



Compressed sensing problem: regularization

Compressed sensing problem:

min Ψ𝑥
1
+ 𝜆 𝑅 𝑥 ,

s. t. 𝑦 − 𝑀Ϝ𝑥
2

2
≤ 𝜖.

𝑅, is a regularizer. The equivalent form is

min
1

2
𝑦 −𝑀Ϝ𝑥

2

2
+ 𝛼𝑅 𝑥 + 𝛽 Ψ𝑥

1
,

where, 𝛼, 𝛽 are some scalars. 



Variational models in the continuous setting

𝑔, 𝑢: Ω → ℜ 𝑜𝑟 0,1 , Ω ⊂ ℜ2 𝑜𝑟 0,1 2,

𝐴: 𝐿2 Ω → 𝐿2 Ω is a bounded linear operator.

min
𝑢∈𝐿2(Ω)

𝜆𝑅 𝑢(𝑥) +
1

2
 
Ω

𝐴𝑢 𝑥 − 𝑔 𝑥 2 𝑑𝑥.

Assume 𝑔 is an image containing some artifacts (noise, blur,… ) and 𝐴
is an approximation of a linear operator, operating on a clean image 𝑢,
and turns it in to 𝑔 . Consider the following optimization problem to 
restore clean image 𝑢:



How to choose regularization function 𝑅?

• Standard Tychonov regularization functions:

Ω ⊂ ℜ𝑁 , 𝑢 ∈ 𝐿2 Ω , 𝑅 𝑢 =
1

2
 
Ω

u2𝑑𝑥 or
1

2
 
Ω

𝛻𝑢 2𝑑𝑥,

𝛻𝑢 𝑥 =
𝜕𝑢 𝑥

𝜕𝑥1
, ⋯ ,
𝜕𝑢 𝑥

𝜕𝑥𝑁
, | . = ||. | 2.



Wrong Choice (clean, noisy and restored images)



Distributional derivatives 
(Reddy 1998)



Distribution

Assume Ω ⊂ ℜ𝑛.

Every linear, continuous functional
𝐹: 𝐷 Ω → ℜ,

is a distribution on the domain Ω, that is 𝐹 ∈ 𝐷 Ω ′, where 
𝐷 Ω = 𝐶𝑐

∞(Ω).

Special case: 𝑢 ∈ 𝐿𝑙𝑜𝑐
1 Ω → 𝑢, 𝜙 =  

Ω
𝑢𝜙𝑑𝑥 .



Classic Green Theorem

Assume Ω ⊂ ℜ𝑛, 𝑢, 𝑣 ∈ 𝐶1  Ω , 𝜈𝑖 is 𝑖th component of the outward

unit normal 𝜈 to the sufficiently smooth boundary Γ of the domain, 
then

 Ω𝑢
𝜕𝑣

𝜕𝑥𝑖
𝑑𝑥 = Γ𝑢𝑣𝜈𝑖𝑑𝑠 −  Ω 𝑣

𝜕𝑢

𝜕𝑥𝑖
𝑑𝑥 .

General case: 𝑢, 𝑣 ∈ 𝐶𝑚  Ω , 𝛼 = 𝑚:

 Ω𝑢𝐷
𝛼𝑣𝑑𝑥 = Γℎ(𝑢, 𝑣)𝑑𝑠 + −1

|𝛼|  Ω𝑣𝐷
𝛼𝑢𝑑𝑥 .



Derivatives of distributions

(𝐷𝛼𝑢, 𝜙) = −1 𝛼 𝑢, 𝐷𝛼𝜙 ,𝜙 ∈ 𝐷 Ω .

Definition (weak derivative): If 𝑢 ∈ 𝐿𝑙𝑜𝑐
1 Ω and there exists a 

𝑤 ∈ 𝐿𝑙𝑜𝑐
1 Ω such that

𝑤,𝜙 = −1 𝛼 𝑢, 𝐷𝛼𝜙 ,𝜙 ∈ 𝐷 Ω ,

then 𝐷𝛼𝑢 = 𝑤 is called the 𝛼th weak derivative of u. 



Example





Definition of Sobolev spaces  

𝑊𝑚,𝑝 Ω = 𝑢: 𝐷𝛼𝑢 ∈ 𝐿𝑝 Ω ;∀𝛼, 𝛼 ≤ 𝑚 .



Variational optimization models
for image problems 

(Chambolle et al. 2010)



Images on 𝐿𝑙𝑜𝑐
1

Assume 𝑢: Ω → 0,1 ,

𝜕𝑢

𝜕𝑥
: 𝐷 Ω → ℜ,

𝜕𝑢

𝜕𝑥
, 𝜙 = − 𝑢,

𝜕𝜙

𝜕𝑥
, 𝜙 ∈ 𝐷 Ω ,

𝜕𝑢

𝜕𝑦
: 𝐷 Ω → ℜ,

𝜕𝑢

𝜕𝑦
, 𝜙 = − 𝑢,

𝜕𝜙

𝜕𝑦
, 𝜙 ∈ 𝐷 Ω ,

𝛻𝑢 ∶ 𝐷 Ω × 𝐷 Ω → ℜ, 𝛻𝑢,
𝜙1
𝜙2

=
𝜕𝑢

𝜕𝑥
, 𝜙1 +

𝜕𝑢

𝜕𝑦
, 𝜙2 , 𝜙 =

𝜙1
𝜙2
∈ 𝐷 Ω 2.



A motivation for definition of TV (Total Variation)

𝛻𝑢, 𝜙 = − 𝑢,
𝜕𝜙1

𝜕𝑥
− 𝑢,

𝜕𝜙2

𝜕𝑦
=− 𝑢,

𝜕𝜙1

𝜕𝑥
+
𝜕𝜙2

𝜕𝑦
= − u, div 𝜙 .

From the definition of operator norm, we get

||𝛻𝑢|| = sup{ 𝛻𝑢, 𝜙 , 𝜙 ∈ 𝐷 Ω 2, |𝜙| ≤ 1},

where

|𝜙| = sup 𝜙1 𝑥, 𝑦
2 + 𝜙2 𝑥, 𝑦

2, 𝑥, 𝑦 ∈ Ω .



Total Variation: Definition

𝑢 ∈ 𝐿𝑙𝑜𝑐
1 Ω ,Ω ⊂ ℜ𝑁

𝐽 𝑢 = sup − Ω𝑢div 𝜙𝑑𝑥: 𝜙 ∈𝐷 Ω , 𝜙 𝑥 ≤ 1, ∀𝑥 ∈ Ω .

A function is said to have bounded variation whenever 𝐽 𝑢 < +∞.

• Definition: Functions with bounded variation (𝐵𝑉(Ω)):

𝐵𝑉 Ω = 𝑢 ∈ 𝐿1 Ω : 𝐽 𝑢 < ∞ .

• | 𝑢| 𝐵𝑉 Ω = | 𝑢| 𝐿1 Ω + 𝐽 𝑢 and 𝐵𝑉(Ω) is a Banach space.



Equivalent definition for the smooth cases 
𝑊1,1(Ω) and 𝐶1(Ω)

Assume 𝑢 ∈ 𝐶1 Ω 𝑜𝑟 𝑢 ∈ 𝑊1,1 Ω , then 

− 
Ω

𝑢div𝜙 𝑑𝑥 =  
Ω

𝜙𝛻𝑢 𝑑𝑥 ,

and the sup over all 𝜙 with 𝜙 ≤ 1 is

− 
Ω

𝑢div𝜙 𝑑𝑥 =  
Ω

𝛻𝑢 𝑑𝑥 .



Optimization problem 

min
𝑢
Ɛ(𝑢) ≔ 𝐽 𝑢 + 𝑢 − 𝑔

𝐿2 Ω

2
.

• 𝐽 and Ɛ are convex.

• This problem has a unique solution (Ɛ is strictly convex).



Discretization of variational models
(Chambolle et al. 2010)



Discrete TV

𝑁 = 6, 𝑢
𝑖

𝑁 + 1
,
𝑗

𝑁 + 1
= 𝑢 𝑖, 𝑗 ,

𝑖, 𝑗 = 0,⋯ ,𝑁 + 1

𝐷𝑥
+𝑢 𝑖, 𝑗 = 𝑢 𝑖 + 1, 𝑗 − 𝑢 𝑖, 𝑗 ,

𝐷𝑦
+𝑢 𝑖, 𝑗 = 𝑢 𝑖, 𝑗 + 1 − 𝑢 𝑖, 𝑗 .



Symmetric boundary conditions for u



ℎ =
1

𝑁 + 1
,

𝑇𝑉ℎ =
1

𝑁 + 1
 

𝑖=1

𝑁

 

𝑗=1

𝑁

𝐷𝑥
+𝑢 𝑖, 𝑗 + 𝐷𝑦

+𝑢(𝑖, 𝑗) .

Discrete TV



Discrete total variation is correct approximation of total 
variation functional 



ROF optimization model

min
𝑢∈ℜ𝑛×𝑛

𝜆 𝛻𝑢
2,1
+
1

2
𝐴𝑢 − 𝑔

2
,

𝑝 𝑖, 𝑗 = 𝑝1 𝑖, 𝑗 , 𝑝2 𝑖, 𝑗 , 𝑝 2,1 =  

𝑖,𝑗=1

𝑛

𝑝1 𝑖, 𝑗
2 + 𝑝2 𝑖, 𝑗

2 ,

𝛻𝑢 𝑖, 𝑗 = 𝐷𝑥
+𝑢 𝑖, 𝑗 , 𝐷𝑦

+𝑢 𝑖, 𝑗 ,

If 𝑔 is a noisy image, then put 𝐴 = 𝐼.



ROF model for MRI restoration problem

min E u =
1

2
𝑧 −𝑀Ϝ𝑢

2

2
+ 𝛼 𝛻𝑢

2,1
+ 𝛽 Ψ𝑢

1
.

A General Form:

min
𝑢∈ℜ𝑛
𝐹 𝐴𝑢 + 𝐺 𝑢 ,

𝐹 and 𝐺 are suitable convex functions.



Primal-dual algorithm to solve MRI 
problems

(Esser 2009)



Adjoint of  a linear operator:

𝐴:ℜ𝑛 → ℜ𝑚 is a linear operator ∶
∀𝑥 ∈ ℜ𝑛, ∀𝑦 ∈ ℜ𝑚, 𝐴𝑥, 𝑦 = 𝑥, 𝐴∗𝑦 .

Conjugate of a convex nonlinear operator:
𝐹:ℜ𝑛 → ℜ is a suitable convex function:

𝐹∗: ℜ𝑛 → ℜ:      𝐹∗ 𝑦 = sup
𝑥
𝑦, 𝑥 − 𝐹 𝑥 .

Proximal operator:

Prox𝜎𝐹 𝑦 = argmin𝑥 𝜎𝐹 𝑥 + 𝑥 − 𝑦 2
2
/2.

Primal-Dual Algorithm (Preliminaries)



Primal-dual problems

Primal Problem:
min
𝑥∈ℜ𝑛
𝐹 𝐴𝑥 + 𝐺 𝑥 ,

Dual Problem:
max
𝑦
− 𝐺∗ −𝐴∗𝑦 − 𝐹∗ 𝑦 .



Primal-dual algorithm

• Initialization: choose 𝑥0 = 𝑥0, 𝑦0 arbitrary;

• For 𝑛 ≥ 0, until the primal value is not equal to the dual value, do:

• 𝑦𝑛+1 = Prox𝜎𝐹∗(𝑦
𝑛 + 𝜎𝐴 𝑥𝑛),

• 𝑥𝑛+1 = Prox𝜏𝐺(𝑥
𝑛 − 𝜏𝐴∗𝑦𝑛+1),

• 𝑥𝑛+1 = 2𝑥𝑛+1 − 𝑥𝑛.

Theorem: Under some weak  assumptions, convergence will be 
guaranteed if 𝜏𝜎𝐿2 < 1 (𝐿 = ||𝐴||).



Primal-dual algorithm for MRI restoration

min E u =
1

2
𝑧 − 𝑀Ϝ𝑢

2

2
+ 𝛼 𝛻𝑢

2,1
+ 𝛽 Ψ𝑢

1

𝐹 𝑦1, 𝑦2, 𝑦3 =
1

2
𝑧 − 𝑦1 2

2
+ 𝛼 𝑦2 2,1 + 𝛽 𝑦3 1, 𝐺 𝑢 = 0,

𝐴 = 𝑀Ϝ,𝛻,Ψ , 𝑦 = 𝑦1, 𝑦2, 𝑦3
𝑡 → 𝐹 𝐴𝑢 = 𝐸 𝑢 ,

𝐴∗ = 𝐹∗𝑀𝑡 , −div,Ψ∗ 𝑡 ,

𝑝 = 𝑝1, 𝑝2 , div 𝑝 𝑖, 𝑗 = 𝐷𝑥
−𝑝1 𝑖, 𝑗 + 𝐷𝑦

−𝑝2 𝑖, 𝑗

= (𝑝1 𝑖, 𝑗 − 𝑝1 𝑖 − 1, 𝑗 ) + (𝑝2 𝑖, 𝑗 − 𝑝2 𝑖, 𝑗 − 1 ).



Primal-dual algorithm for MRI restoration

𝐹∗ 𝑣 = 𝐹∗ 𝑣1, 𝑣2, 𝑣3 = 𝑧, 𝑣1 +
1

2
𝑣1 2
2
+ 𝐼

𝑣2 2,∞≤𝛼, 𝑣3 ∞≤𝛽
𝑣 ,

Prox𝜎𝐹∗ 𝑤1, 𝑤2, 𝑤3 =

𝑤1 − 𝜎𝑧

2
,

𝑤2, 𝑤2 2,∞ ≤ 𝛼

𝛼𝑤2

𝑤2 2,∞
, otherwise

,

𝑤3, 𝑤3 ∞ ≤ 𝛽

𝛼𝑤3

𝑤3 ∞
, otherwise

.



Sampling pattern (a), clean 
image (b), zero filled solution 
(c), restored image, using 
variational model (d). 



About SOAL Optimizer Competition
(Selesnick et al. 2017)



min 𝑥
0

s. t. Ax = b

A suggestion: Using non-separable regularization:

min𝜓(𝑥) + 𝜆 𝐴𝑥 − 𝑏
2

2
,

Non-separable regularization



Various kindes of 𝑆



Penalty function 𝜓
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